Alternatives to Active HVAC Systems

Course Number: HV-6004
Credit: 6 PDH
Subject Matter Expert: A. Bhatia, Mechanical Engineer
Price: $169.99 Purchase using Reward Tokens. Details
57 reviews  57 reviews   
Overview

In Alternatives to Active HVAC Systems, you'll learn ...

  • Explain the factors having greatest impact on summer cooling loads
  • Understand the mechanisms of heat gain control by intervening solar radiation, vegetation, ventilation and internal heat gains
  • Explain the principles of natural ventilation design in night cooling
  • List the design factors for stack and wind driven ventilation

Overview

PDHengineer Course Preview

Preview a portion of this course before purchasing it.

Credit: 6 PDH

Length: 61 pages

The global energy scenario has undergone a drastic change in the last two decades. Due to ever growing demand and shortage of supply, the cost of fossil fuel (coal, oil and natural gas) is increasing day by day. Increasing consumption has led to environmental pollution resulting in global warming and ozone layer depletion. Consequently, the era of fossil fuel is gradually coming to an end and the attention is focused on the conservation of energy and search for renewable sources of energy, which are environmentally benign.

Buildings are major consumers of energy insofar as their construction, operation and maintenance are concerned. It is estimated that almost 50% of the global energy demand is due to buildings, and active HVAC equipment is the highest contributor. Thus, energy conscious architecture has evolved to address these issues. It involves the use of eco-friendly and less energy intensive building materials, incorporation of passive cooling techniques in building design, and integration of renewable energy technologies.

Passive cooling methods maximize the efficiency of the building envelope by minimizing heat gain from the external environment and facilitate cooling by air movement, ventilation, night cooling, evaporation, desiccant dehumidification and earth coupling to name a few. All these techniques require little or no input of electrical energy. Even when these alternatives cannot avoid the use of compressive cooling systems completely, their role can optimize the energy consumption and the peak electric load.

This six-hour course will introduce you to the passive cooling systems and is intended to be used as guidelines to choose technologies that are suitable to different situations. This course is aimed at students, mechanical engineers, architects, facility managers, environmentalists, energy auditors and anyone who wants a basic understanding of cooling systems.

 

Specific Knowledge or Skill Obtained

This course teaches the following specific knowledge and skills:

  • Explain the factors having greatest impact on summer cooling loads
  • Understand the mechanisms of heat gain control by intervening solar radiation, vegetation, ventilation and internal heat gains
  • Explain the principles of natural ventilation design in night cooling
  • List the design factors for stack and wind driven ventilation
  • Explain the basic principles of direct and indirect evaporative cooling systems
  • Understand the factors affecting evaporation rate and cooling
  • Understand the principles of desiccant cooling and dehumidification
  • Describe the performance of an absorption chiller system v/s vapor compression cycle
  • Understand various radiant cooling strategies
  • Understand the fundamentals of direct ground cooling systems and geothermal heat pumps

Certificate of Completion

You will be able to immediately print a certificate of completion after passing a multiple-choice quiz consisting of 30 questions. PDH credits are not awarded until the course is completed and quiz is passed.

Board Acceptance
This course is applicable to professional engineers in:
Alabama (P.E.) Alaska (P.E.) Arkansas (P.E.)
Delaware (P.E.) District of Columbia (P.E.) Florida (P.E. Area of Practice)
Georgia (P.E.) Idaho (P.E.) Illinois (P.E.)
Illinois (S.E.) Indiana (P.E.) Iowa (P.E.)
Kansas (P.E.) Kentucky (P.E.) Louisiana (P.E.)
Maine (P.E.) Maryland (P.E.) Michigan (P.E.)
Minnesota (P.E.) Mississippi (P.E.) Missouri (P.E.)
Montana (P.E.) Nebraska (P.E.) Nevada (P.E.)
New Hampshire (P.E.) New Jersey (P.E.) New Mexico (P.E.)
New York (P.E.) North Carolina (P.E.) North Dakota (P.E.)
Ohio (P.E. Self-Paced) Oklahoma (P.E.) Oregon (P.E.)
Pennsylvania (P.E.) South Carolina (P.E.) South Dakota (P.E.)
Tennessee (P.E.) Texas (P.E.) Utah (P.E.)
Vermont (P.E.) Virginia (P.E.) West Virginia (P.E.)
Wisconsin (P.E.) Wyoming (P.E.)
Reviews (57)
More Details

PDHengineer Course Preview

Preview a portion of this course before purchasing it.

Credit: 6 PDH

Length: 61 pages

Add to Cart
Add to Wish List
Terms of Use: By using our website, you consent to our Terms of Use and use of cookies in accordance with our Privacy Policy. Accept