Stress and Failure Analysis of Laminated Composite Structures

Course No. S-6001

An Online Continuing Education Course for Engineers

Credit: 6 PDH
STRESS AND FAILURE ANALYSIS OF LAMINATED COMPOSITE STRUCTURES

(Emphasis on Classical Lamination Theory)

John J. Engblom, Ph.D., P.E.
Professor Emeritus
Florida Institute of Technology
TABLE OF CONTENTS

1.0 Introduction 4

2.0 Material Definitions 5

2.1 Isotropic Material Behavior 5

2.2 Anisotropic Material Behavior 5

2.3 Orthotropic Material Behavior 6

3.0 Hooke’s Law for Orthotropic Materials 6

4.0 Restrictions on Elastic Constants 14

5.0 Stress-Strain Relations for Generally Orthotropic Lamina 16

6.0 Biaxial Strength Theories for Orthotropic Lamina 23

6.1 Separable Strength (Failure) Theories 25
 6.1.1 Maximum Stress Theory 25
 6.1.2 Maximum Strain Theory 28
 6.1.3 Hashin Quadratic Theory 30
 6.1.4 Chang Quadratic Theory 34

6.2 Generalized Strength (Failure) Theories 37
 6.2.1 Tsai-Hill Theory 37
 6.2.2 Tsai-Wu Tensor Theory 41

6.3 Another Example Comparing Failure Theories 47

6.4 Failure Envelopes (Generalized Theories) for Biaxial Stress State 49

6.5 Effect of Shear Stress Direction on Lamina Strength 54

7.0 Analysis of Laminated (Multi-Layered) Composites 55

7.1 Specifying Stress and Strain Variation in a Laminate 55

7.2 Relating Resultant Forces and Moments to Strain and Curvature 59
7.3 Including Hygrothermal Effects in Laminate Analysis 63

7.4 Construction and Properties of Various Laminates 69
 7.4.1 Symmetric Laminates 70
 7.4.2 Unidirectional, Cross-Ply and Angle-Ply Laminates 70
 7.4.3 Quasiisotropic Laminates 72

7.5 Some Examples of Laminate Analysis 73
 7.5.1 Two-Ply [45/0] Laminate Subjected to Applied Loads 74
 7.5.2 Two-Ply [45/0] Laminate Subjected to Thermal Load Only 78
 7.5.3 Two-Ply [45/0] Laminate Subjected to Applied and Thermal Loads 82
 7.5.4 Quasiisotropic [0/45/-45/90]s Laminate Subjected to Applied Loads 84

8.0 Summary 87

9.0 References 87
1.0 INTRODUCTION

This course focuses on presenting a well established computational method for calculating stresses/strains in reinforced laminated composite structures. The basis for the presented computational method is often referred to as classical lamination theory. A clear understanding of this approach is supported by the development of the fundamental mechanics of an orthotropic lamina (ply). Various failure theories are presented each requiring that stresses/strains be quantified on a ply-by-ply basis in order to make failure predictions. Both applied loads and hygrothermal (thermal and moisture) effects are treated in the computational procedure. Stress and failure predictions are an important part of the process required in the design of laminated composite structures.

The learning objectives for this course are as follows:

1. Understanding the differences between isotropic, orthotropic and anisotropic material behavior
2. Having knowledge of the material constants required to define Hooke’s law for an orthotropic lamina (ply)
3. Understanding the restrictions on the material constants required in evaluating experimental data
4. Knowing the difference between reference and natural (material) coordinates for an orthotropic lamina
5. Being familiar with the stress-strain relations in reference and natural coordinates for an orthotropic lamina
6. Understanding the coordinate transformations used in transforming stresses and/or strains from one coordinate system to another
7. Knowing generally the types of tests performed to determine the stiffness and strength properties of an orthotropic lamina
8. Having knowledge of a number of biaxial strength (failure) theories used in the design of laminated composite structures
9. Understanding which in-plane strength quantities are needed, as a minimum, in applying various failure theories
10. Knowing the difference between separable and generalized failure theories
11. Understanding that the maximum stress and maximum strain failure theories make similar predictions except under certain material behavior
12. Appreciating under what conditions the Chang failure criteria reduces to the Hashin failure criteria
13. Knowing the basis for the fact that the Tsai-Wu failure criteria is more general than the Tsai-Hill failure criteria
14. Being familiar with the effect of the direction of shear stress on lamina strength
15. Understanding the laminate orientation code used to define stacking sequence
16. Being familiar with a number of special laminate constructions designed to eliminate undesirable composite material behavior
17. Understanding the computational procedure for determining the stresses/strains in a laminated composite subject to applied loads and/or hygrothermal effects
18. Having knowledge of the limitations of classical lamination theory.
It is important to note a limitation on the computational methodology presented in this course. Stress predictions from classical lamination theory are quite accurate in locations away from boundaries, e.g., free edges, edge of a hole or cutout, etc., of the laminate. Thus at distances equal to the laminate plate(shell) thickness or greater, the computational method presented herein is accurate and useful in the preliminary design of laminated composite structures. The basis for this limitation is that lamination theory assumes a generalized state of plane stress which is reasonably accurate away from boundaries. Along boundaries, the state of stress becomes three-dimensional with the possibility that interlaminar shear and/or normal stresses can become significant. Deviation of boundary behavior from classical lamination theory is often referred to as a boundary-layer phenomenon. Computation of stresses along laminate boundaries is generally accomplished through the application of finite difference, finite element or boundary element method computer programs and is beyond the scope of the methodology presented in this course.

2.0 MATERIAL DEFINITIONS

A lamina or ply can be thought of as a single layer within a composite laminate and is comprised of a matrix material and reinforcing fibers. When the fibers are long the layer is referred to as a continuous-fiber-reinforced composite, and the matrix primarily serves to bind the fibers together. Alternatively layers with short fibers are denoted as discontinuous-fiber-reinforced composites. Lamina are quite thin, i.e., generally on the order of 1 mm or .005 in. thick. Lamina can have unidirectional or multi-directional fiber reinforcement. Therefore a number of lamina bonded together form a laminate. Most laminated composites used in structural applications are in fact multilayered. Laminates have identical constituent materials in each ply; otherwise the term hybrid laminate is used. Fiber reinforced composites are heterogeneous but for purposes of design analysis are typically assumed to be macroscopically homogeneous. Thus for the computational methodology presented in this course, orthotropic laminates (plies) are treated as homogenous with directionally dependent properties. Orthotropic material behavior falls somewhere between that of isotropic and anisotropic materials.

2.1 Isotropic Material Behavior

For isotropic materials deformation behavior is independent of direction. Thus normal stresses produce normal strains only and shear stresses produce shear strains only, as depicted in the figure below.